Harvest Moisture Recommendations

Randy Shaver
Dairy Science Department
University of Wisconsin - Madison
Ensiled Feeds

- Corn Silage
- Hay-Crop Silage
- High-Moisture Shelled Corn
A Note

- % DM = 100% - Moisture%

- % Moisture = 100% - DM%
Whole-Plant Corn Silage

Grain ~40-45% of WPDM
- Avg. 30% starch in WPDM
- Variable grain:stover

Stover= ~55-60% of WPDM
Leaves = 15% of DM
Stem = 20-25% of DM
Cob+Shank+Husk= 20% of DM

80 to 98% starch digestibility
- Kernel maturity
- Kernel particle size
- Endosperm properties

40 to 70% IVNDFD
- Lignin/NDF
- Hybrid
- Maturity

Whole-Plant Corn Silage
- Avg. 30% starch in WPDM
- Variable grain:stover
Whole Plant

<table>
<thead>
<tr>
<th>Year</th>
<th>LSD(0.10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>1.0</td>
</tr>
<tr>
<td>1989</td>
<td>1.4</td>
</tr>
<tr>
<td>1990</td>
<td>0.6</td>
</tr>
</tbody>
</table>

DM%
Ton DM/acre

Wiersma et al., JPA, 1993
Wiersma et al., JPA, 1993

ivTDMD %
Whole-Plant Corn Silage

- Variable grain:stover
- Kernel maturity
Maturity effects in corn silage

Bal & co-workers, JDS, 1997; UW Madison

<table>
<thead>
<tr>
<th></th>
<th>ED</th>
<th>¼ ML</th>
<th>2/3 ML</th>
<th>BL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS DM%</td>
<td>30</td>
<td>32</td>
<td>35</td>
<td>42</td>
</tr>
<tr>
<td>CS Starch, %</td>
<td>18</td>
<td>29</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>CS aTT StarchD, %</td>
<td>90<sup>a</sup></td>
<td>88<sup>a</sup></td>
<td>86<sup>b</sup></td>
<td>75<sup>c</sup></td>
</tr>
<tr>
<td>Diet aTT StarchD, %</td>
<td>94<sup>a</sup></td>
<td>93<sup>a</sup></td>
<td>92<sup>b</sup></td>
<td>88<sup>c</sup></td>
</tr>
</tbody>
</table>
Whole-Plant Corn Silage

- Kernel maturity
- Kernel particle size
Adapted from Schwab et al., 2003.
Target for Whole-Plant Corn Silage

- 35% DM (65% Moisture)
Concerns

- ≤30% DM (≥70% Moisture)
 - Reduced yield
 - Reduced starch content
 - Increased seepage
 - High acidity
 - Aerobic instability
Concerns

≥40% DM (≤60% Moisture)
- Reduced starch digestibility
- Reduced fiber digestibility
- Kernel & stover particle size
- Silo packing
- Silage fermentation
DM Content of Corn Silages

<table>
<thead>
<tr>
<th></th>
<th>1 Std Dev</th>
<th>Average</th>
<th>1 Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairyland</td>
<td>29%</td>
<td>37%</td>
<td>45%</td>
</tr>
<tr>
<td>2002-2007</td>
<td>n=13k/yr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy One</td>
<td>23%</td>
<td>34%</td>
<td>45%</td>
</tr>
<tr>
<td>2002-2007</td>
<td>n=19k/yr.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Relationship Between Forage Moisture and Kernel Milk Stage

$R^2 = 0.42$

1990-2000
$n = 2245$

Whole plant moisture (%)

Kernel milk stage

Dent Black layer
Height of Cutting

Higher Cutting

- NDF, ADF, & lignin
- IVNDFD
- whole-plant moisture

DM yield loss of 5-8%
Relationship Between Forage Moisture and Kernel Milk Stage

$R^2 = 0.42$

Whole plant moisture (%) vs. Kernel milk stage

1990-2000

n = 2245

Dent Black layer

$R^2 = 0.42$
Table 1. High Moisture Corn Storage in Conventional, Bunker, Bag, and Oxygen Limiting Silos

<table>
<thead>
<tr>
<th></th>
<th>Corn Kernel Moisture, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
</tr>
<tr>
<td>Ear Corn</td>
<td>26</td>
</tr>
<tr>
<td>Shelled Corn</td>
<td>26</td>
</tr>
<tr>
<td>Bottom Unloading Oxygen Limiting Silos</td>
<td></td>
</tr>
<tr>
<td>Corn Kernel Moisture, %</td>
<td></td>
</tr>
<tr>
<td>Ear corn-rolled*</td>
<td>26</td>
</tr>
<tr>
<td>Shelled corn</td>
<td>24</td>
</tr>
</tbody>
</table>

*OL Silo with Forage Unloader

Source: Rankin, 2009
Concerns

- **Dry HMC** (<26% kernel moisture)
 - Reduced ruminal & total tract starch digestion
 - Especially if mean particle size >1,000 microns
 - Fermentation
Concerns

- **Wet HMC** (≥35% kernel moisture)
 - Fast rate & high extent of ruminal starch digestion
 • Especially if mean particle size < 2,500 microns
 - Yeast/ethanol fermentation
Concerns

- **Snaplage** (40% - 45% moisture)
 - Reduced starch content
 - Increased NDF content
 - Increased variability in starch, NDF & energy contents
 - Fast rate & high extent of ruminal starch digestion
 - Particle size
 - Yeast/ethanol fermentation
Figure 5. The effect of DM on legume silage fermentations

Data courtesy of Cumberland Valley Analytical Services, Hagerstown, MD.

Source: B. Stone, 2009 VPI Cow College
Figure 2. The pH at which the growth of *Clostridium tyrobutyricum* ceases as a function of the DM content.

Source: Muck, JDS, 1988
Temperature Rise vs Bulk Density

Source: Muck & Holmes, 2006, NRAES-181 from Pitt, 1983, Trans ASAE

\[
x = 14 \text{ lb. DM} / \text{cu. ft.}
\]
Figure 1. Graph of porosity (decimal) vs. dry matter content (decimal) for various bulk densities.

Source: Holmes & Muck, www.uwex.edu/ces/crops/uwforage/Porosity-FOF.pdf
Target for Haycrop Silage

- 40% DM (60% Moisture)
Concerns

- **<35% DM (>65% Moisture)**
 - Increased risk of clostridial spoilage
 - Increased NPN
 - Increased RDP
 - Increased seepage
 - Particle size
Concerns

- ≥50% DM (≤50% Moisture)
 - Greater risk of weather damage
 - Greater harvest losses
 - Silo packing
 - Silage fermentation
 - Particle size
<table>
<thead>
<tr>
<th>Dairyland</th>
<th>1 Std Dev</th>
<th>Average</th>
<th>1 Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-2007</td>
<td>34%</td>
<td>44%</td>
<td>54%</td>
</tr>
<tr>
<td>n=16k/yr.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy One</td>
<td>29%</td>
<td>39%</td>
<td>49%</td>
</tr>
<tr>
<td>2002-2007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=10k/yr.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Welcome to Dairy Cattle Nutrition UW-Extension

The Dairy Cattle Nutrition UW-Extension site is designed to provide research-based information for the public seeking resources on all aspects of the nutrition of dairy cattle.

Web Site Highlights

- Dairy Team News from the University of Wisconsin
- 2009 Four State Dairy Nutrition & Management Conference Proceedings
- UW Feed Grain Evaluation System
 - Technical note: A method to quantify prolamin proteins in corn that are not negatively related to starch digestibility in ruminants (Seth Lutson and Pat Hoffman - JSS paper)
 - Corn Biochemical Factors related to starch digestibility in ruminants (Pat Hoffman and Randy Shaver - conference paper)
 - Corn Biochemical Factors related to starch digestibility in ruminants (Pat Hoffman and Randy Shaver - soyde)
 - A guide to understanding prolamin (Pat Hoffman and Randy Shaver)
 - UW Feed Grain Evaluation System (Pat Hoffman and Randy Shaver)
 - Relative Grain Quality - RGD (Pat Hoffman and Randy Shaver)

Spreadsheets

- UWU2008 Corn Silage: Calculates TDF, NEL, NEL per ton, and NEL per acre

Publications

- Benchmarking for age nutrient composition and digestibility
- Feeding Programs in High Producing Dairy Herds

Presentations

- Benchmarking for age nutrient composition and digestibility
- Diets fed in selected WI high producing dairy herds

Dr. Randy Shaver
Professor - UW Madison & Extension Dairy Nutritionist
280 Animal Sciences Building
1355 Observatory Drive
Madison, WI 53706-1294
Phone: (608) 263-3491
Fax: (608) 265-3912
rshaver@wisc.edu
Biographical Information

Pat Hoffman
Professor - UW Extension
Marshall Agricultural Research Station
9316 Yellowstone Drive
Marshall, WI 54449
Phone: (715) 932-2003
Fax: (715) 387-1723
phoffman@wisc.edu
Biographical Information

Visit UW Extension Dairy Cattle Nutrition Website
http://www.uwex.edu/ces/dairynutrition/