Corn Silage Evaluation: MILK2000 Challenges & Opportunities With MILK2006

Professor Randy Shaver

Department of Dairy Science
University of Wisconsin - Madison
University of Wisconsin - Extension
Whole-Plant Corn Silage

Grain ~40-45% of WPDM
- Avg. 28% starch in WPDM
- Variable grain:stover

Stover= ~55-60% of WPDM
- Leaves = 15% of DM
- Stem = 20-25% of DM
- Cob+Shank+Husk= 20% of DM

80 to 98% starch digestibility
- Kernel maturity
- Kernel particle size
- Endosperm properties

40 to 70% NDFD
- lignin/NDF

Adapted from Joe Lauer, UW Agronomy
NRC (2001) Dairy TDN

\[
TDN\ 1-X = \tdCP + (\tdFA \times 2.25) + \tdNDF + \tdNFC -7
\]
Why measure NDFD *in vitro* vs. calculating via lignin?

- Lignin wet chem assay difficult & its calibration with NIRS has been poor
- Lignin to NDFD equation is theoretically based
- Lignin explains only about half of the *in vitro* NDFD variation
 - Stover NDF & lignin contents ✷ & NDFD ▼ with maturity, while WP NDF & lignin contents are constant or ▼ as grain% increases
Relationship between lignified NDF and *in vitro* NDFD for corn & alfalfa forages

Corn silage:
- 3-9%

Alfalfa:
- 11-20%

Corn silage: 3-9%

Alfalfa: 11-20%

\[R^2 = 0.56 \]

\[R^2 = 0.54 \]

Allen, 2003
30-h NDFD (adapted from Allen, 2003) vs. NDF digestibility calculated using NRC-01 lignin equation

<table>
<thead>
<tr>
<th>Whole-Plant Lignin, % DM</th>
<th>Calculated NDFD</th>
<th>30-h NDFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>62</td>
<td>60</td>
</tr>
<tr>
<td>3.1</td>
<td>57</td>
<td>45</td>
</tr>
<tr>
<td>4.2</td>
<td>53</td>
<td>30</td>
</tr>
</tbody>
</table>
Measured NDFD or Estimated from Lignin?

<table>
<thead>
<tr>
<th>NDF, %</th>
<th>Lignin, %</th>
<th>Calc. NDFD</th>
<th>30-h NDFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.0</td>
<td>3.52</td>
<td>56</td>
<td>46.0</td>
</tr>
<tr>
<td>45.0</td>
<td>3.26</td>
<td>57</td>
<td>48.4</td>
</tr>
<tr>
<td>45.0</td>
<td>3.32</td>
<td>57</td>
<td>54.4</td>
</tr>
<tr>
<td>45.1</td>
<td>3.18</td>
<td>57</td>
<td>55.0</td>
</tr>
<tr>
<td>45.0</td>
<td>3.43</td>
<td>56</td>
<td>67.3</td>
</tr>
</tbody>
</table>

- Corn silage data set from Van Amburgh (2004)
- Similar relationships from 36.5 to 51.8% NDF

Adapted from: Rick Grant, NRAES Silage Conf., 2006
The incubation time-point debate

- **48-hr.**
 - Reflects maintenance intake for use in NRC summative equation
 - Less influenced by lag & rate, so possibly lower COV

- **30- or 24-hr.**
 - 30-h more closely related to ruminal retention time
 - 30-h was used in most cow trials
 - Faster lab turn-around
 - Better lab efficiency at 24-h?
The incubation time-point debate

- **MILK2000**
 - 48-h

- **MILK2006**
 - 48-h default, with 30-h or 24-h User Defined Option

- Lab average NDFD required
 - NDFD DMIadjustment = (avg. NDFD – NDFD) * 0.26
 - NDFD adjustment for summative TDN$_{1x}$ equation
Adapted from Coors (data from Justen, 2004).
Variation in “normal” corn silage NDF digestibility calculated using NRC-01 lignin equation and table data

<table>
<thead>
<tr>
<th>Whole-Plant Lignin, % DM</th>
<th>Calculated NDFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 (2stdev)</td>
<td>65</td>
</tr>
<tr>
<td>1.8 (1stdev)</td>
<td>61</td>
</tr>
<tr>
<td>2.6 (avg.)</td>
<td>59</td>
</tr>
<tr>
<td>3.4 (1 stdev)</td>
<td>56</td>
</tr>
<tr>
<td>4.2 (2stdev)</td>
<td>56</td>
</tr>
</tbody>
</table>
NDFD -- MILK2000 vs. MILK2006

MILK2000
- A 1%-unit change in NDFD from lab average NDFD changes DMI 0.37 lb (Oba and Allen, 1999, JDS)
- Double counting of TDN & DMI changes related to changes in NDFD
 - Tine et al. (2001, JDS) and Oba and Allen (1999, JDS)
 - At production levels of intake, NDFD has minimal impact on NE_L content but does impact NE_L intake primarily thru its impact on DMI
- Calculation of NE_{L-3x} from TDN_{1x} as per NRC (1989)

MILK2006
- NDFD used for calculating NE_{L-3x} adjusted for impact of NDFD on DMI (Oba and Allen, JDS, 1999)
- Calculation of NE_{L-3x} from TDN_{1x} via DE and ME as per NRC (2001)
Corn Silage NDFD% vs. NE$_{L3x}$

Calculated assuming corn silage with 35% DM proc., 27% starch, 45% NDF, and 58% avg. NDFD

Mcal/lb.

NDFD%
Calculated assuming corn silage with 35% DM proc., 27% starch, 45% NDF, and 58% avg. NDFD%
NRC (2001) Dairy TDN

\[TDN \ 1-X = tdCP + (tdFA \times 2.25) + tdNDF + tdNFC - 7 \]
NRC (2001) Dairy TDN

\[\text{tdNFC} = \text{NFC}\% \times 0.98 \times \text{PAF} \]

<table>
<thead>
<tr>
<th>Material</th>
<th>PAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn grain, ground dry</td>
<td>1.00</td>
</tr>
<tr>
<td>Corn grain, ground high moisture</td>
<td>1.04</td>
</tr>
<tr>
<td>Corn silage, normal</td>
<td>0.94</td>
</tr>
<tr>
<td>Corn silage, mature</td>
<td>0.87</td>
</tr>
</tbody>
</table>
Schwab-Shaver Energy Equation

\[\text{TDN}_{1-x} = \text{DIG}_{\text{CP}} + \text{DIG}_{\text{FA}} + \text{DIG}_{\text{Starch}} + \text{DIG}_{\text{NSTNFC}} + \text{DIG}_{\text{NDF}} - 7 \]
Predicted Starch Digestibility

Adapted from Schwab et al., 2003.
Differences in calculation of \(tdNFC \)

Based on corn silage with 41% NFC & 28% starch

<table>
<thead>
<tr>
<th>WP DM %</th>
<th>NRC-01 (tdNFC%)</th>
<th>Schwab et al., 2003 (tdStarch&NSTNFC%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unprocessed</td>
<td>Processed</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>35</td>
<td>38</td>
<td>39</td>
</tr>
<tr>
<td>40</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>45</td>
<td>35</td>
<td>34</td>
</tr>
</tbody>
</table>
Calculated assuming corn silage with 27% starch, 45% NDF, and 58% NDFD

Corn Silage WP DM% vs. TDN₁ₓ

Unprocessed

Processed

WP DM%
Corn Silage WP DM% vs. Milk per Ton

Calculated assuming corn silage with 27% starch, 45% NDF, and 58% NDFD

Unprocessed

Processed

MILK2006
Evaluating Starch Digestion in Ruminants

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Vivo</td>
<td>Total Tract Collections & Digesta Markers Cannulae (Rumen, Duodenum, Ileum)</td>
</tr>
<tr>
<td>Macro In Situ</td>
<td>Rumen cannulae
Incubation time?
Starch-Feeds cannot be fine ground
Post-Ruminal Enzymatic?</td>
</tr>
<tr>
<td>In Vitro</td>
<td>Rumen fluid
Incubation time?
Starch-Feeds cannot be fine ground
Post-Ruminal Enzymatic?</td>
</tr>
</tbody>
</table>
Corn Silage Processing Score
Mertens, USDFRC & Dairyland Labs, Arcadia, WI

- Ro-Tap Shaker
 - 9 sieves (0.6 thru 19 mm) and pan
 - Analyze for starch on 4.75 mm & greater sieves

% of starch passing

<table>
<thead>
<tr>
<th>4.75 mm sieve</th>
<th>CSPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>>70%</td>
<td>Optimum</td>
</tr>
<tr>
<td>70% to 50%</td>
<td>Average</td>
</tr>
<tr>
<td>< 50%</td>
<td>Poor</td>
</tr>
</tbody>
</table>
Kernels and Large Fragments Were Retained on > 4.75-mm Sieves
Calculated assuming corn silage with 40% DM 27% starch, 45% NDF, and 58% NDFD
Degree of Starch Access (DSA)
Blasel, Hoffman and Shaver, JAFST, 2006

- Adaptation of food industry assay “Degree of Starch Gelatinization”
- Detects particle size, moisture, and vitreousness differences in corn samples
- Appears to offer better characterization of processed corn silage samples than KPS
- DSA can be related to total tract starch digestion
 - More animal validation data needed
- Pilot study of assay across labs in progress
Blazel et al., 2005
Dry Matter P<0.0001

$r^2 = 0.76$

Blazel et al., 2005
DSA vs. Total Tract Starch Digestibility from Literature Sources

\[y = 0.198x + 76.9 \]

\[R^2 = 0.73 \]

Difference worth 3 lb. milk
Corn Silage DSA vs. TDN\textsubscript{1x}

Calculated assuming corn silage with 27% starch, 45% NDF, & 58% NDFD

MILK2006
MILK2006: Starch Digestion
User Defined Options

- Default
 - WP DM & Kernel Processing Regressions
- KPS
- DSA
- Ruminal in situ plus post-ruminal in vitro
TDN$_{1x}$ Simulation -- Input Extremes

LQ 45% DM unproc., 20% starch, 54% NDF, and 46% NDFD

HQ 30% DM proc., 34% starch, 36% NDF, and 70% NDFD

MILK2006

MILK2000
Milk per Ton Simulation -- Input Extremes

LQ 45% DM unproc., 20% starch, 54% NDF, and 46% NDFD

HQ 30% DM proc., 34% starch, 36% NDF, and 70% NDFD

- MILK2000: 4256 lb./ton CS DM
- MILK2006: 2242 lb./ton CS DM
- 2418 lb./ton CS DM
Milk per Ton -- High NDF, NDFD vs. Low NDF, NDFD
Ivan et al., JDS, 2005

LF 26% starch, 49% NDF, 58% NDFD

HF 22% starch, 53% NDF, 67% NDFD
Milk per Ton -- High NDF, NDFD vs. Low NDF, NDFD
Ivan et al., JDS, 2005

LF 26% starch, 49% NDF, 58% NDFD
HF 22% starch, 53% NDF, 67% NDFD

Calculated from animal data
Treatment differences for model-predicted milk per ton versus milk per ton from in vivo data

Calculated from 10 JDS papers with 13 comparisons
Treatment differences for model-predicted milk per day versus milk per day in vivo data

Calculated from 10 JDS papers with 13 comparisons
UW Correlations

\(n = 3727 \) treatment means

<table>
<thead>
<tr>
<th>r-values</th>
<th>Milk per Ton DM 2006</th>
<th>Milk per Ton DM 2000</th>
<th>Milk per Ton DM 1995</th>
<th>Milk per Ton DM 1991</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDF</td>
<td>-0.46</td>
<td>-0.40</td>
<td>-0.94</td>
<td>-0.99</td>
</tr>
<tr>
<td>Starch</td>
<td>0.48</td>
<td>0.44</td>
<td>0.75</td>
<td>0.74</td>
</tr>
<tr>
<td>NDFD</td>
<td>0.49</td>
<td>0.70</td>
<td>0.16</td>
<td>-0.10</td>
</tr>
<tr>
<td>StarchD</td>
<td>0.30</td>
<td>0.21</td>
<td>-0.25</td>
<td>-0.27</td>
</tr>
</tbody>
</table>
UW Correlations

\(n = 3727 \) treatment means

<table>
<thead>
<tr>
<th>r-values</th>
<th>Milk per Acre 2006</th>
<th>Milk per Acre 2000</th>
<th>Milk per Acre 1995</th>
<th>Milk per Acre 1991</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM Yield tons/acre</td>
<td>0.97</td>
<td>0.97</td>
<td>0.88</td>
<td>0.85</td>
</tr>
<tr>
<td>Milk per Ton DM</td>
<td>0.23</td>
<td>0.20</td>
<td>0.52</td>
<td>0.61</td>
</tr>
</tbody>
</table>
Relationship between milk per acre and milk per ton of corn hybrids in South Central WI during 2002.
Visit UW-Madison Dairy Science Department’s Website

http://www.wisc.edu/dysci/