Parkinson’s Disease
Erwin B. Montgomery Jr. MD
Professor, Department of Neurology
Affiliate Scientist, National Primate Research Center
Affiliate Professor, Department of Biomedical Engineering
Affiliate Professor, Department of Communicative Disorders

University of Wisconsin-Madison
Potential Conflicts of Interest

• Speaker programs
 – Teva Pharmaceuticals
 – Boehringer and Ingelheim

• Consultant
 – Advanced Neuromodulation Systems
 – Advanced Bionics

• Grants
 – Medtronic Neuromodulation
“Off label”, Experimental and Investigational Uses

• I may discuss uses of drugs and/or devices for indications not approved by the FDA

• The role of the FDA is to regulate interstate commerce in drugs and devices, not to determine the practice of medicine
Disclaimer

• I do not guarantee the correct spelling of any word on any slide
Epidemiology

- Prevalence 150/100,000 population
- Age of greatest risk 57 – 63 years
- Baby boom generation entering age of greatest risk
- Current 1.5 million will increase to nearly 3 million by 2015
Diagnosis

• No laboratory diagnostic test
 – PET and SPECT poor positive and negative predictive value
• Genetic tests not relevant to 97% of cases in North America
• No biomarkers
Clinical Features

- Motoric
 - 3 of 4 cardinal signs
 - Slowness and poverty of movement = bradykinesia and akinesia
 - Tremor at rest
 - Rigidity to passive movement
 - Cogwheel or lead-pipe
 - Gait and postural abnormalities
Bradykinesia and Akinesia

- Of limb movement
- Of gait and postural reflexes
- Swallowing
 - Contributes to malnutrition
Tremor

- Typically but not exclusively at rest
- 4 – 6 Hz oscillations
- Any part of the body although distal upper extremity most common
- Variable
 - ~30% without tremor
 - Variable within a subject
- Affected by stress
Increased Muscle Tone

- Rigidity
- Resistance to passive movement
 - Cogwheel
 - Lead-pipe
- Highly variable
Gait and Postural Abnormalities

- Flexed posture
- Loss of postural reflexes
- Slow gait
 - Short step length
 - Decreased cadence
 - Decreased arm swing
Non-Motoric Symptoms

- Decreased sense of smell
- Depression
 - May antedate motoric symptoms and disability
- Autonomic problems
 - Orthostatic hypotension
 - Urinary bladder problems
 - GI motility problems
 - Abnormal sweating
Non-Motoric Symptoms

• Obsessive-compulsive traits
• Cognitive problems
 – Impaired executive functions
 – Dementia
Parkinson’s Syndrome

- Idiopathic Parkinson’s disease
- Parkinson-Plus syndromes
- Lower Body Parkinsonism
- Parkinsonism/Dementia
- Others
Idiopathic Parkinson’s disease

- Associated with Lewy Bodies
- Degeneration of substantia nigra pars compacta
- New staging
 - Begins in the caudal brainstem and olfactory tubercle then ascends upwards in the brain
Parkinson’s Disease
Parkinson-Plus syndromes

Tauopathies

• Multi-Systems Atrophy
 – Parkinsonism plus cerebellar and severe autonomic dysfunction
 – May have specific MRI abnormalities
 – Neurofibrillary tangles on post-mortem specimen
Parkinson-Plus syndromes

Tauopathies

- Progressive Supranuclear Palsy
 - Supranuclear gaze palsy
 - Neurofibrillary tangles on post-mortem specimen
Lower Body Parkinsonism

- Vascular
 - Infarcts particularly of the globus pallidus intern or externa

- Normal Pressure Hydrocephalus
 - Expansion of the ventricular system
Parkinsonism/Dementia

- Diffuse Lewy Body Disease
- Alzheimer's disease
- Creutzfeldt-Jakob Disease
- Cortico-Basal Ganglia Degeneration
Others

• Drug Induced
 – Metoclopramide
 – Traditional neuroleptics
 – Some atypical neuroleptics
 • Risperdal
 • Geodon
 • Abilify
Others

- Wilson’s disease
- Carbon monoxide poisoning
- Kuft’s disease
- Machado-Joseph’s disease (SCA 3)
- Environmental toxins
 - MPTP
 - Ecstasy
 - Rotenone
What Causes Parkinson’s Disease?

• Genetic?
• Environmental?
• Both?
• Not contagious
Genetic Causes of Parkinson’s disease

- Eleven different mutations have been identified
 - The first alpha-synuclein
 - Most not relevant to typical Parkinson’s disease in North America
Importance of Genetic Causes

• May have a common mechanism
• This mechanism may be relevant to those with Parkinson’s disease not related to known genetic causes
 – Involvement of the Ubiquitin system
 – Process of getting rid of “old” proteins before they “gum up” the works
Ubiquitin and Old Proteins

• The Levy body
 – Hallmark of idiopathic Parkinson’s disease
 – Made up of ubiquitin and alpha-synuclein
Environmental Causes

- MTPT story
 - MPTP toxicity prevented by selegiline
 - Inhibits Monoamine Oxidase (MAO) in the brain
 - Neuroprotection
 - Selegiline
 - Rasagiline
Environmental Causes

- Herbicides and pesticides
 - Rotenone
 - Damages mitochondria
 - Mitochondria energy plant in the cell
Both Genetic and Environmental

- Inherit the risk
 - No disease unless also exposed to environmental agent
- Prone to oxidative stress
Therapy

- Neuroprotection
- Symptomatic medications
- Rehabilitation
- Exercise
- Counseling
Opportunities to Slow Disease Progression

• MAO-B inhibition
 – Protective in the MPTP animal model of Parkinson’s disease
 – DataTop study
 – TEMPO study
Anti-Oxidants

- Blueberries
- Co-enzyme Q10
- Brain fertilizer
 - Glial Derived Nerve Growth Factor
 - Immunophylins
 - Exercise
Symptomatic Treatment
Dopamine Replacement Therapies

- Carbidopa/levodopa (Sinemet)
- Entacapone/carbidopa/levodopa (Stalevo)
- Dopamine agonists
 - Ropinirole (Ropinirole)
 - Pramipexole (Mirapex)
- Fetal cell transplantation
- Porcine retinal neuroepithelial transplant
- Stem cell transplant
Non-dopaminergic

- Anti-cholinergics
 - Trihexyphenidyl (Artane)
 - Amantadine (Symmetrel)
- Adenosine A2 antagonists
- GDNF
Symptomatic Treatment: Prevention of iatrogenic Disease

Preventing or delaying Dyskinesia
Nutritional Issues

• Levodopa therapy
 – Dopamine does not cross the blood brain barrier

• Complicated pharmacokinetics and pharmacodynamics

• Short plasma half-life
Levodopa pharmacokinetics and pharmacodynamics

• Absorption by enzyme mediated facilitated transport
 – Both across the gut endothelium and blood brain barrier
 – Displays saturable kinetics
 – Competition with large neutral amino acids
Affect of Dietary Protein on Levodopa pharmacokinetics

• Large protein meal increases GI and plasma large neutral amino acids that compete with levodopa transport across the gut endothelium and blood brain barrier

• <5% of patients will display a “protein effect”
Managing the “Protein Effect”

• Minimize protein intake
 – 60 gm protein diet
 – Divide protein intake into multiple small meals

• Saving protein intake to late evening meal to be discouraged
Issue of Dietary Supplements

- Parkinson cachexia
- Supplements low in protein
Meals, GI Kinetics and Levodopa

• Levodopa absorbed only in the distal jejunum
• Taking levodopa with meals will delay gastric emptying and delay absorption
• Absorption will be erratic
• CAUTION – pharmacies often affix label instructions to take levodopa with meals
Special Cases - NPO

- No parental form of levodopa or other medications for Parkinson’s disease
- 4% risk of neuroleptic malignant-like syndrome with sudden discontinuation of anti-Parkinson medications
 - Fever
 - Muscle spasms and breakdown
 - Renal failure
 - Delirium
- Do not routinely hold anti-Parkinson medications for surgery
Special Cases – NG feedings and Levodopa

• Issue of controlled (extended) release carbidopa/levodopa versus immediate (regular) carbidopa/levodopa

• Grinding up or pulverizing either controlled release preparation converts to immediate release

• Controlled release preparations
 – 50/200 or 25/100 carbidopa/levodopa
Special Cases – NG feedings and Levodopa

- 125 mg (as levodopa) of controlled release carbidopa/levodopa = 100 mg (as levodopa) immediate release carbidopa/levodopa

- Breaking a controlled release 25/100 tablet makes it effectively immediate release but 25% more
Special Cases – NG feedings and Levodopa

- Straight conversion of controlled release to immediate release risks overdose
- Straight conversion of immediate release to controlled release risks underdose
Special Cases – Nausea and Levodopa

- Carbidopa blocks peripheral dopamine receptors to block nausea
- May require supplemental carbidopa (25 mg tablets called Lodosyn)
- Domperidone (Motilium) from Canada
Dopamine Agonists

- Ropinirole (Requip)
- Pramipexole (Mirapex)
- Less nutritional issues other than higher risk of nausea
COMT Inhibitors

- Entacapone (Comtan)
- Entacapone/carbidopa/levodopa (Stalevo)
- Risk of diarrhea
New Surgical Approaches
Electric Ray

(c) Sue Daly
Who Should Do DBS Surgery?

- Importance of a team
 - Neurosurgeon
 - Neurologist
 - Intra-operative Neurophysiologist
- Microelectrode recordings
- Nurse programmer
Before implantation (bilateral STN)

- Asleep: 29%
- "On" with dyskinesia: 35%
- "On" without dyskinesia: 16%
- "Off": 20%

After implantation (bilateral STN)

- Asleep: 34%
- "On" with dyskinesia: 13%
- "On" without dyskinesia: 49%
- "Off": 4%
STN Stimulation: Outcome

- Deep brain stimulation (DBS) is safe and effective

Limousin et al., NEJM, 1988
DBS Remarkable Benefit

• Succeeds when all manner of pharmacological flogging fails
• Succeeds when brain transplant fails
• Better than best medical therapy
• Estimated that 15% of patients are candidates though less than 1% are referred
DBS of the Pedunculopontine Nucleus for Gait and Postural Abnormalities

Standard and Accepted “Off-label” Use
Epidural Motor Cortex Stimulation (EMCS) for Movement Disorders. Standard and Accepted “Off-label” Use.
A Nater-Potater Production

Nate
Montgomery
Future Neuroscientist
• “Teacher, may I go now? My brain is full.” - Gary Larson

• Questions?
 – So long as they are not too hard